Variables aléatoires discrètes

Définition

Une variable aléatoire est une fonction $X:\Omega\longrightarrow\mathbb{R}$ définie sur un univerS Ω qui associe à chaque événement $\omega\in\Omega$ un nombre réel $X(\omega)$.

Exemples

- On considère un jeu à gratter : le gain correspondant à chaque ticket est une variable aléatoire.
- On lance deux dés à six faces : la somme correspondant à chaque éventualité est une variable aléatoire.

Notations

Si X est une variable aléatoire définie sur un univers Ω et $a,b \in \mathbb{R}$, on note :

- P(X = a) la probabilité que X soit égale à a;
- $P(X \le a)$ la probabilité que X soit inférieure ou égale à a (de même pour $P(X \ge a)$, etc.);
- $P(X \in [a ; b])$ ou $P(a \le X \le b)$ la probabilité que X appartienne à l'intervalle [a ; b].

On dit que X est une variable aléatoire discrète lorsqu'elle ne prend que des valeurs isolées (c'est toujours le cas lorsque Ω est fini). Ces valeurs sont alors notées x_i (comme en statistique). On pose également $p_i = P(X = x_i)$.

Définition

Soit X une variable aléatoire **discrète** prenant chaque valeur x_i avec une probabilité p_i .

La **loi de la variable aléatoire** X est la fonction qui associe à chaque valeur x_i sa probabilité p_i .

Dans le cas fini, la loi d'une variable aléatoire peut être décrite à l'aide d'un tableau.

Exemple

On prélève au hasard un ticket de bingo lors de l'émission initiale du jeu. Soit X la variable aléatoire égale au gain correspondant. On lit sur le verso du ticket la mention obligatoire suivante :

« **Tableau de lots :** sur 1 500 000 tickets : 288 000 lots de 4€, 48 000 lots de 8€, 5 800 lots de 40€, 1 000 lots de 44€, 20 lots de 400€ et 10 lots de 5000€. »

Les valeurs prises par *X* sont ainsi {4; 8; 40; 44; 1000; 5000; 0}.

Le tableau suivant résume la loi de *X*, où les probabilités ont été arrondies à trois chiffres significatifs.

x_i	4	8	40	44	1 000	5 000	0
p_i	0,192	0,032	$3.87 \cdot 10^{-3}$	$6,67 \cdot 10^{-4}$	$1,33\cdot 10^{-5}$	$6,67 \cdot 10^{-6}$	0,771

Pour calculer le gain moyen, on peut diviser la somme mise en jeu par le nombre total de tickets.

Gain moyen =
$$\frac{288\,000 \times 4 + 48\,000 \times 8 + \dots + 10 \times 5\,000}{1\,500\,000} \simeq 1,25 \ .$$

On peut aussi former la somme de tous les gains multipliés par leur probabilité :

Gain moyen =
$$0,192 \times 4 + 0,032 \times 8 + \cdots 0,771 \times 0 \simeq 1,25$$
.

$\mathscr{J}\mathbf{D}$

Définition

Soit X une variable aléatoire discrète prenant chaque valeur x_i avec une probabilité p_i . On appelle **espérance** de X et on note E(X) le nombre réel :

L'espérance représente la **valeur moyenne** de la variable aléatoire : dans le cas d'un grand nombre de répétitions d'une expérience aléatoire, la valeur moyenne observée se stabilise autour de l'espérance.

F

Définitions

Soit X une variable aléatoire discrète prenant chaque valeur x_i avec une probabilité p_i . La **variance** de X, notée V(X), est définie par :

L'**écart-type** de X, noté $\sigma(X)$, est la racine carrée de la variance :

L'écart-type est une mesure de la dispersion des valeurs autour de l'espérance.

Remarques

- La variance est l'espérance du carré des écarts à l'espérance, tout comme en statistique la variance est la moyenne des carrés des écarts à la moyenne.
- La variance d'une constante est nulle.

Propriétés (admises)

Soient X et Y deux variables aléatoires et a, b deux nombres réels.

- L'espérance est linéaire : E(aX + b) = aE(X) + b
- L'espérance d'une somme est la somme des espérances : E(X + Y) = E(X) + E(Y).
- $V(aX + b) = a^2V(X)$ et $\sigma(aX + b) = |a| \sigma(X)$.
- Si X et Y sont **indépendantes**, alors V(X + Y) = V(X) + V(Y).
- $V(X) = E(X^2) E(X)^2 = (\sum p_i x_i^2) E(X)^2$ (formule de König-Huygens)

Application à la loi uniforme sur $\{1, 2, ..., n\}$

On dit qu'une variable aléatoire X suit la loi uniforme sur $\{1,2,\ldots,n\}$ si elle prend pour valeurs les entiers compris entre 1 et n avec une probabilité $\frac{1}{n}$. On a donc $P(X=k)=\frac{1}{n}$ pour tout entier $k\in\{1,2,\ldots,n\}$.

Proposition

L'espérance d'une variable aléatoire X qui suit la loi uniforme sur $\{1,2,\ldots,n\}$ est égale à

Démonstration

$$E(X) = \sum p_i x_i = \sum_{k=1}^n \frac{1}{n} \times k = \frac{1}{n} \sum_{k=1}^n k = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}.$$